Малая выборкаСтраница 1
Если генеральная совокупность подчинена нормальному закону распределения (что на практике имеет место очень часто), то выборочная средняя как средняя арифметическая п нормально распределенных случайных величин также имеет нормальный закон распределения. Таким образом, величина
распределена по стандартному нормальному закону, и схема решения задач при известном генеральном среднем квадратическом отклонении σ остается прежней.
Если же генеральное среднее квадратическое отклонение σ неизвестно и приходится пользоваться его выборочной оценкой s, то используется статистика t (1.9.26), которая, как мы уже отмечали, подчинена закону распределения Стьюдента с v = n—1 степенями свободы. При v < 30 имеются значительные различия между распределением Стьюдента и нормальным распределением (тем более значительные, чем меньше v). Используя функцию распределения Стьюдента, мы можем записать равенство, аналогичное формуле Лапласа:
(1.9.27)
где S(t, v) — функция Стьюдента, значения которой для различных значений t
и v подробно рассчитаны и представлены в специальных таблицах.
Выражение (
1.9.27)
эквивалентно выражению:
(1.9.28)
где
Решение задач с помощью этого равенства аналогично решению задач с использованием формулы Лапласа. Лишь определение п несколько усложняется из-за того, что оно входит также в параметр v = n—1.
Поэтому можно воспользоваться схемой последовательных приближений. Вначале производят оценку (s2) генеральной дисперсии. Затем находят п1 по схеме (1.9.25), используя таблицу функции Лапласа и принимая σ2 = s2- По найденному n1 и, соответственно, v1 = n1 — 1 и заданному значению
Р=1—α определяют t1 (по таблице распределения Стьюдента) и вычисляют и так далее.
Теперь можно снова повторить расчет по v2 = n2 — 1 и т.д.
Итерация заканчивается, если окажется ni ≈ ni-1.
Пример 1.9.7.
Для определения среднего заработка работника за день при соблюдении необходимых условий было отобрано 10 работников, заработок которых оказался равным (в руб.): 325; 337; 319; 330; 327; 328; 332; 320; 318; 334. Требуется определить с вероятностью 0,95 доверительный интервал для среднего заработка работников в генеральной совокупности, если есть основания полагать, что заработная плата в генеральной совокупности подчиняется нормальному закону определения.
Решение:
По данным выборки определяем среднюю и дисперсию. Получаем
;
Рассчитываем несмещенную оценку генеральной дисперсии
Предположение о нормальном характере генерального распределения позволяет нам использовать равенства (1.9.27) и (1.9.28). Обращаясь к таблице значений функции Стьюдента, по заданным P = 2S(t, v)=0,95 и v = n—1 = 10 – 1 = 9 находим t = 2,26.
Другие материалы:
Место Конта в истории социологии
При жизни Конта его философские и общественно-политические были сравнительно мало влиятельны. Однако, начиная с 60-х годов XIX в. интерес к позитивизму как философской доктрине возрос. Особенно важное значение имела апелляция позитивизма ...
Критерии организационной результативности и виды результатов.
Критерием выступает наиболее существенный признак, служащий мерилом для оценки степени совершенства системы. Экстремальное значение выбранного критерия выражает оптимальность рассматриваемой системы по выбранной характеристике.
Можно ...
Последствия эмиграции
Воздействие эмиграции на различные стороны общественных отношений и процессов, протекающих в обществе, поистине многогранно. Она имеет свои позитивные и негативные последствия. Эмиграция выступила в качестве амортизатора по отношению к от ...