Оценка доли признакаСтраница 1
Для точечной оценки доли признака в генеральной совокупности (р) естественно взять выборочную долю
р*=
где n — объем выборки,
т — количество единиц в выборке, обладающих данным признаком.
Можно доказать, что эта оценка является состоятельной, несмещенной, эффективной.
Вопрос об интервальной оценке рассмотрим сначала для случая возвратной выборки.
При такой организации выборки случайная величина p*, как известно из теории вероятностей, имеет биномиальный закон распределения. Расчет доверительного интервала с применением формулы биномиального закона связан с определенными вычислительными трудностями. Однако при достаточно большом объеме выборки (примерно n ≥ 20, пр ≥ 10) биномиальное распределение хорошо аппроксимируется нормальным распределением с параметрами
М (p*) = p;
σ(p*) =
Следовательно, случайная величина имеет стандартное нормальное распределение (с параметрами M(z)=0; σ(z)=1).
Задавшись определенной вероятностью Р=1— α, имеем:
2Ф
(zα)=1- α (1.9.7)
где Ф
(zα)= — интегральная функция Лапласа, значения которой для различных значений z рассчитаны и приводятся в специальных таблицах.
Равенство (1.9.7) эквивалентно равенству:
P {│p*- p │<z1 · σ( p*)} = 2Ф
(zα) (1.9.7')
Таким образом, предельная ошибка выборки εα определяется из равенства:
(1.9.8)
Применение этой формулы затрудняется тем, что в нее входит неизвестный параметр р — генеральная доля. Однако при большом п можно заменить неизвестный параметр р его точечной оценкой р*. Тогда получим:
(1.9.9)
Приведенные выше формулы связывают между собой, в конечном счете, три величины: доверительную вероятность Р=1−α, предельную ошибку выборки ε и объем выборки п.
В каждой конкретной задаче две из этих величин задаются и определяется третья величина. Таким образом, мы имеем следующие три типа задач:
I. Даны п и Р, определить ε.
II. Даны п и ε, определить Р.
III. Даны Р и ε, определить п
Первые два типа задач связаны с анализом результатов уже произведенной выборки объема п, следовательно, и с найденной точечной оценкой р*.
Задачи третьего типа должны решаться до проведения выборки. По заданной доверительной вероятности P мы можем определить величину z (по таблице интегральной функции Лапласа). Из (1.9.9) получаем:
(1.9.10)
Но в (1.9.10) входит величина р*, получаемая в результате выборки, а речь идет об определении п до осуществления выборки.
Поскольку р* неизвестно, то определяем из этого равенства, при каком значении р* величина п будет максимальной. Используя обычный метод следования функции на максимум, получаем:
откуда р*=½
Следовательно,
(1.9.11)
Выборка такого объема наверняка обеспечит заданные надежность и точность.
Рассмотрим примеры на каждый из трех типов задач. Исследуется вопрос о доле поврежденных клубней картофеля после механической уборки.
Другие материалы:
Анализ типических групп
Аналитическая группировка проводится для изучения взаимосвязи между признаками, положенными в основание группировки, и признаками, используемыми для характеристики групп. Она позволяет оценить качественные особенности каждой группы интерв ...
Социальная защита населения
Под государственной социальной защитой понимается система отношений индивид—государство и семья—государство, складывающаяся по поводу: обеспечения государством гарантированного минимального уровня жизни для нормального воспроизводства раб ...
Общие характеристики творчества Николаса Лумана
Если такие науки, как биология, психология или социология рассматривать с дистанции безучастного наблюдателя, то можно прийти к мысли о том, что биология имеет дело с жизнью, психология - с душой или с сознанием, а социология - с общество ...